Model-driven Deception for Control System
Environments

William Hofer
Cyber Security Engineer
Pacific Northwest National Laboratory
Richland WA, U.S.A
william.hofer@pnnl.gov

Kathleen Nowak
Mathematician
Pacific Northwest National Laboratory
Richland WA, U.S.A
kathleen.nowak @pnnl.gov

Abstract—Deception techniques are a useful defensive mecha-
nism that could be very valuable in control systems where updates
and patches can be difficult. However, to deceive a motivated and
targeted attacker it is necessary to enhance deception platforms
with capabilities to model and simulate physical processes to
achieve necessary fidelity. In this paper, attributes of cyber-
physical decoys are discussed and a design of a system with these
attributes is presented. A boiler model use case is provided to
demonstrate how this novel deception capability can be integrated
into and used to defend a system.

Index Terms—cyber-physical systems, process modeling, de-
ception, network security

I. INTRODUCTION

Operation technology environments, including energy de-
livery and oil, gas, and water distribution, have increasingly
become targets for cyber attacks. The digitization of the
sensing and control and the commoditization of the com-
munication infrastructure has exposed a cyber attack surface
to these critical services. The impact of successful attacks
on these environments can have costly [14] and physical [6]
ramifications. Cyber security solutions that are tailored to and
effective for these unique systems is greatly needed.

It is understood that OT and IT systems have different oper-
ational and cyber security requirements [19]. The best practice
of rolling updates and patch cycles that are now common place
in enterprise operations are much more difficult to follow in
OT environments due to the high availability requirement and
subsequent rigorous and slow testing and validation processes.
As such, additional cyber security techniques are needed to
provide OT defenders the ability to protect themselves from
cyber threats.

Deception frameworks are one such solution. Cyber de-
ception has been a concept that has existed for many years
and is historically utilized for honeypots [17] to gather threat
intelligence. Honeypot technology includes real, emulated,
and/or simulated cyber capabilities to mimic services from
operational environments. Collections of honeypot decoys are
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called honeynets [7]. Honeypots have been extensively used
to model general system configurations to ensnare and study
threats and their vectors on the internet.

Only more recently have deception techniques been com-
mercially utilized for cyber defense. Capabilities using decep-
tion techniques, including honeynets, in coordinated mech-
anisms for operational cyber defense are called deception
platforms [11]. Deception platforms for traditional IT environ-
ments lack the integration and coordination with real systems
to sufficiently deceive targeted threats. Current approaches
to cyber deception within cyber-physical environments model
the device independently of the physical process of which it
would be tied. Deceptions that are disconnected from physical
process and not communicating with the cyber controllers
limits the fidelity and its deceptive qualities.

In this paper we contribute a methodology for creating
deception decoys that are integrated into real OT systems to
make them harder to detect and more appealing as targets.
We discuss the deficiencies of current deception platforms
for deploying realistic decoys in OT. We present the various
models of deception. We then go into depth coverage of the
requirements for an integrated OT decoy. Finally, we present
a prototype implementation in a boiler system use case to
demonstrate these concepts.

II. RELATED WORK

Cyber deception has been an academic concept since the late
1980s [18] and was first developed into a security tool by Co-
hen et. al[3]. Since then a community of researchers have been
developing and leveraging honeypot technology extensively
for threat intelligence gathering. The honeynet.org [5] project
has become a major community organization for collecting
honeypot contributions. Extensive research has been done
to develop and use honeypot technology within traditional
IT environments. The increasing interest in cyber-physical
environments has led to more recent research into honeynet
technology and use cases for operational environments.



The initial effort to develop an OT honeypot was the
SCADA Honeynet Project [12]. This effort leveraged the
honeyd low interaction honeypot daemon that provides the
ability to create simulated hosts with network services on a
system. The SCADA Honeynet project extended the honeyd
to model a common OT programmable logic controller (PLC).
The networking interfaces of common PLC services, including
Modbus/TCP with a few supported functions, FTP, Telnet, and
web servers, were developed to provide a simulation of a PLC.
The objective of this was to provide a honeypot to detect scans
looking for PLC devices.

Since the initial SCADA Honeynet project, a few more
specific honeypots have been developed. The Conpot project
[13] is a docker based low interaction honeypot designed to
mimic common industrial communication protocols to appear
as process control devices. The GasPot[21] project created
from scratch a special purpose python based honeypot to
emulate a Veeder Root Guardian AST. Both MiniCPS[1]
and HoneyPhy [8] are research into frameworks to enable
model backed ICS honeypots. MiniCPS utilizes the miniNET
network emulator with an integrated database to enable the
definition and execution of physical process algorithms to feed
data to honeypots. HoneyPhy defines an architecture where
honeypots can query a simulator to respond with realistic data.

With the strong progression of cloud technologies, more
recently there has been a resurgence of using deception
techniques to provide cyber network defense [16]. Distributed
deception platforms provide centralized control of resources
to define, deploy, and manage decoys in operational environ-
ments for threat detection and defense [11]. A key defining
difference between distributed deception platforms and hon-
eypots is that they are meant to be integrated into opera-
tional systems for defending against active threats and attacks
where honeypots are traditionally used for threat intelligence
gathering. In the rest of this paper we present our research
into turning concepts from ICS honeypots into a distributed
deception platform for integration of decoys into and defense
of operational technology systems.

III. DECEPTION WITH A PHYSICAL PROCESS

A cyber-physical system, by definition, integrates cyber
components to monitor and control physical processes. The
cyber components are, in general, controllers, sensors, com-
munication infrastructure, and the software applications that
use the data from the physical process to perform different
functions such as optimization [22], delegation of human
agency[20], or safe process management[4]. The physical
systems include the mechanisms that interact with the physical
world like actuators and instrumentation that are driven by
physical processes.

Due to the strong integration of real world physics, de-
ception platforms must operate differently than traditional IT
deceptions. For instance, turning off a valve will be detected
downstream by other sensors because the flow will reduce
and stop. Additionally, controllers and applications leverage
data from sensors to send control commands to each other.
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A believable deception must be integrated with the system to
project the effects of events. An attack will likely attempt to
control the physical process in a negative manner. To make
the attacker believe they are achieving their objective, it must
predict the effects of these actions, to a reasonable degree.

Traditional cyber deception platforms integrate into a sys-
tem through the generation of realistic looking data, ac-
cess/identity control accounts, and/or honey tokens and the
deployment of decoy services such as web applications, file
shares, or remote access. Each of these components can be
made to appear as part of the system with realistic banners,
directory, and filenames related to the business or corporate
branding. This data can be distributed onto real workstations
and servers to be found by attackers and direct them to
the decoy services. These capabilities are useful and could
be used within cyber-physical deceptions, but they alone are
insufficient.

The threat model driving this research is an adversary
knowledgeable in cyber-physical systems with a targeted ob-
jective to effect the operation of the physical process. Under
this threat model the attacker will be aware of, and searching
for, specific categories of equipment to understand how they
interface with the physical process and how they can be
controlled or manipulated. The objective of this research is to
delay the attack from successful completion while increasing
the probability of detecting the threats presence and actions.
Achieving these goals under this threat model requires suffi-
cient fidelity.

To provide sufficient fidelity there are additional require-
ments that must be met by cyber-physical deception platforms.
First, the deception platform must provide the ability to
simulate a model of the physics of a real system process.
This includes supporting the ability to generate realistic vari-
able data from decoy device responses. Second, a deception
platform must provide the ability to define new devices and
connect them to the physics model being simulated. We will
go into more depth about the attributes of these decoy devices
later. Finally, the decoys should appear as tempting, easy
to exploit targets, that are part of the real operating cyber-
physical system. We propose that these three requirements are
necessary for an adequate deception of cyber-physical decoys
in a real system.

IV. TYPES OF DECEPTION

There are multiple ways in which a model driven deception
can be deployed. These include cloning, copies, and integrated
deceptions. Each type of deception is useful under different
circumstances. Their use and utility are a function of the
location of the deception in relation to the real system and
what type of threat is being countered. A brief overview of
each type of deception and microgrid examples of how they
could be utilized are provided. The focus of the discussion and
contributions in this paper is largely centered on integrated
deceptions.



A. Clone

A clone deception is when an exact replica is presented as
the real system to deceive an attacker that they are interacting
with the real system components. This type of deception traps
the attacker into a fictional world that is directly related to
the real system. The model for this type of deception can be
driven directly from observed data of the real system. Only
upon control or other altering interactions by the attacker is
the projection of effect necessary. In a microgrid, a deceptive
clone could be developed that mimics an entire building HVAC
cyber-physical system as shown in “Fig. 1”. The clone is
posing as the adjacent building in this deception. In this type
of deception there would be some mechanism, like a firewall,
IPS, or VPN, that would determine when to send connections
to the cloned system instead of the real system.
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Fig. 1. Deception Logical Model

B. Copy

A copy deception, also shown in “Fig. 17, is similar to the
clone where replicas of a real system are presented. However,
the difference with this deception is that one or more replicas
are presented within the same network perspective as the real
system. This type of deception makes it appear to observers
that there are multiple running cyber-physical systems and
provides an obfuscation style defense where an attacker must
determine which system is the real system. Each decoy copy
interacts with a simulation of the real system model and can be
driven at offset times or with some form of data fuzzing such
that the data does not appear to be exactly the same, further
obfuscating which system is the correct system. Each copy can
respond and react to interactions independently. This type of
deception could be utilized in coordination with moving target
defense techniques like IP address hopping [15] to further
confuse an attacker. An example of this type of deception in
our microgrid example would be to create a copy, or multiple
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copies of a building on the microgrid and deploy deceptive
ones in different locations. The copied building could have
the same components as the original or differences to add to
the confusion.

C. Integrated Decoys

Integrated deceptions places newly conceived decoys within
the real system where the decoy modeled data is defined such
that it logically relates to real data within the system. For
example, in a chemical process, a decoy could be made that
controls a fictional valve downstream that controls the flow to
a decoy sensor. The modeled values output from these decoys
are extrapolated or derived as some function of the real system
values. Through these extrapolations it appears that the decoy
produces data related through physics to the real system and
thereby providing a high fidelity target of value to an attacker
that has already bypassed other defenses and infiltrated the
OT network. An example of constructed integrated decoys is
provided in the use case presented in section VIIL

To further increase the fidelity of integrated decoys hon-
eyshills can be configured. A honeyshill is are real systems
that are configured to interact with decoys to make them
further appear as part of the real cyber-physical system. Most
components of cyber-physical systems are embedded sensors
and controllers that continually interact to monitor and control
a physical process. As such, the devices are configured to for
machine-to-machine interaction. A decoy that is quietly sitting
on a network appears either as a decoy or a non-valuable test
system. In addition, existing threat tactics including searching
data on systems like human-machine interfaces (HMIs) and
data historians to locate devices to target /citehacker-machine-
interface. Configuring honeyshills like real remote terminal
units (RTUs) or HMIs to communicate with decoys the same
fashion as real components completes the fidelity picture for
decoys.

V. DISTRIBUTED DECOY ARCHITECTURE

To enable the definition and deployment of a deceptive
campaign across, and integrated within, a real system, it
is necessary to utilize a distributed system with centralized
control. OT systems are often distributed across multiple
networks or network segments where each contains a part
of the physical process operation. Decoys could potentially
be deployed to any of those networks and therefore requires
distributed platforms for running decoys.

“Fig. 2” depicts an architecture of a system that would
allow the central deployment and management of decoys
across a distributed OT environment. A central server hosts
the model and simulation of the physical process to drive
the behavior and interaction of the decoys in a deception
campaign. This central server provides the capability to define
decoy configurations and allocations across the distributed
execution platforms. Logging and alerting for the entire system
would be collected and reported through this central control
host.
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Fig. 2. Distributed Decoy Architecture

One or more distributed execution platforms are deployed
across all networks where decoys would be desired for detec-
tion and defense. Ideally, a special security network segment
would be created to connect the execution platforms and the
central configuration host, such that the deception platform
communication isn’t easily observable breaking the camou-
flage of the decoys. Each execution platform locally caches up-
to-date simulation data to support decoy execution, definitions
and configurations of decoys, and a reporting capability to
inform the central server of any interactions. The distributed
platform is collocated in any network segments where decep-
tion is desired. The platform bridges decoy devices onto the
network segment such that they are visible to an attacker via
scans and device discovery tools.

VI. ATTIBUTES OF AN OT DEcCOY

The three main attributes to our OT Decoys include pro-
tocol, variables, and logic. Each of these attributes defines
the characteristics and behavior of the decoy acting as a
device. Breaking down each decoy into these three attributes
allows for an abstraction of complex system architectures.
A device in a real environment would speak one or more
network protocols, control or monitor some set of variables,
and perform actions based on a set of logic. To be effective,
a decoy should also do the same. Each of these attributes
are user defined to construct decoys that appear as a realistic
device in their system.

OT devices speak a multitude of different protocols de-
pending on the domain in which they are performing control
operations, a small sample of which includes DNP3, BACnet,
and Modbus protocols. For instance, a decoy in a deception
based on building automation and control would most likely
communicate via BACnet in a way that relates to the physical
process. Devices also support traditional protocols, like HTTP,
SSH, Telnet, and FTP, for configuration management. A set
of protocols should be associated with each decoy to provide
interfaces for threat interaction.

Decoys should expose through protocols one or more
variables that correspond to the physical process they are
emulating. Decoy variables can include things like temper-
ature, voltage, or flow rate. Any number of variables can be
assigned to a decoy and the variables can be newly defined
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from extrapolations of other existing variables learned from
the physical system. A decoy variable might be an input or
an output. For instance, if we want a decoy that monitors
pressure and triggers a control valve, we could extrapolate the
pressure value by using two input variables from the values for
temperature and flow rate from real sensors. A variable that is
an output of one decoy device can be read by another device
using the network protocol associated with those devices. This
interaction generates traffic on the network and adds to the
realism of the deception.

The final attribute for an OT Decoy is a set of logic that
directs the operation of the device. A simple example of such
logic would be the decision to turn on or off a fan in an
HVAC system to allow cool air to flow into a room. A decoy
device could act as the controller that monitors the rooms
air temperature and triggers a fan to rotate if the temperature
reaches a certain threshold. The logic of a device can be as
simple as an if-then statement. For example, if temp | X then
turn off fan”. The logic of decoy devices effects the operation
of the simulation which in turn drives the values of the decoy.

VII. PROTOTYPE IMPLEMENTATION

To implement the intended Distributed Decoy Architecture,
the MiniCPS [1] framework has been leveraged. Nodes in
MiniCPS are Mininet containers with an assigned module
of Python executing their logic. We extended MiniCPS with
additional functionality to prototype the discussed deception
platform.

The underlying Mininet command line interface was ex-
panded to allow for dynamic decoy, variable, and logic cre-
ation. In addition, MiniCPS was augmented to support the
BACnet protocol via the bacpypes Python library. Also, a
dynamic abstract class was created for decoys that executes
user defined logic. This abstract class runs the logic associated
with a decoy device, stored in a database, and queries and
updates the database housing the present value of all of the
variables in the deception. The abstract decoy Python code
also inherits a send and receive functionality from the chosen
protocol for the decoy.

When a deception campaign is executed, two special fea-
tures are also started; a virtual network is created that bridges
decoys to a user selected network interface and a special
container is started for the simulation of the physical process.
The virtual network creates the virtual interfaces that provide
the networking configuration like MAC and IP address so the
system can communicate and interact on the bridged physical
network. The simulation container runs the simulated model
of the real physical process to generate realistic data for
the decoys to use during execution. The simulation container
communicates through a database in shared file system space
with the decoys which hides it from external observation.

Controllers execute logic to monitor and control a process
for safety and optimization. To enable user input of mathe-
matical logic functions in our prototype, we leveraged Sympy
[9]. Sympy is a symbolic mathematics Python library. Sympy
provides the ability to validate and extract variables from



mathematical expressions. Extracted variables can then be
filled with data from the simulation and evaluated to calculate
new values and determine if decoy control actions should be
executed.

VIII. CONSTRUCTING AN OT DECEPTION

In this section a simple boiler system decoy use case is
presented. For our use case we used an existing model of a
boiler taken from the Modelica Buildings Library [2]. “Fig. 3”
is a logical depiction of the boiler and radiator heating a room.
The Modelica simulation was used, with four software PLCs,
to represent the real physical system. Dissecting the boiler
model yields variables relating to temperature measurements,
actuator values, and one supervisory input. The variables are
listed in “Table I” below. “Fig. 4” is a logical representation
of inputs and outputs from the model mapped to each software
PLC device.
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Fig. 3. Logical Diagram of Boiler Model

The first step in constructing the deception is to generate the
physics model for simulating the real system. The expected
real world approach for generating this model would be to
utilize archived data in a data historian or to capture live
network traffic and learn in real time. However, for this test
case we simulated a year long dataset to train a recurrent
neural network (RNN). RNN models were chosen due to their
defining feature of drawing information from temporal data
produced from input data. The RNN considers data inputs
from concurrent connections representing short term memory
[10]. The implementation also allows for the examination
of broad contextual features of the data, forming long term
memory. Training the RNN was done by framing a forecasting
problem where given temperature readings and subsequent
controller decisions made at previous time steps enables the
forecasting of temperature readings at the next time-step. A
set of variables, the behavior of the PLCs, and the ability to
project values based on system changes are learned in the RNN
model. Executing the RNN model predicts the future states of
the physical system and updates a database.
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TABLE I
BOILER MODEL VARIABLES
Variable Description Units
TOut Outdoor air temperature °K
TRoo Room air temperature °K
TSup Supply water temperature °K
TRet Return water temperature °K
TBoi Boiler water temperature °K
StaPumPri Primary pump flow rate kg/s
StaPumSec Secondary pump flow rate kg/s
StaValPri Primary valve position %
StaValSec Secondary valve position %
StaBoi Boiler Status On/Oft
SetPotBoi Set point for the boiler °K
BoiOverride | Override switch for the boiler | On/Off

For our use case, we want to add a decoy that is integrated
into the system and looks appealing. As such, we selected a
decoy safety valve controller that calculates the pressure at
certain points in the boiler system, shuts-off the boiler, and
open a control valve if it reaches a threshold beyond acceptable
values. If an attacker wanted to cause a damaging failure to
this boiler system, they would first have to shutoff this safety
controller. The placement of our decoy valve is shown with
green text in 3.

Creating a decoy for this safety valve constructs a miniCPS
container with specified attributes. The first attribute is logic
operations to determine whether the boiler should shutdown.
For this example, our logic is extrapolated from the boiler
model. Decoys need only approximate reality and do not
require perfect models of physics. We leverage Gay-Lussac’s
law of proportional relation of pressure and temperature to
approximate the pressure readings of this system where only



temperature is available.

For our logic to operate, creation of new decoy variables;
boiler pressure, control valve state, and an upper threshold of
boiler pressure set point; was necessary. The default values
for the control valve is set closed, pressure to 0 (as it will
be calculated as the decoy starts), and finally the pressure set
point to 30 PSI. Each of these new variables, and the existing
boiler override and temperature reading variables, are mapped
to the decoy to control the status of the boiler and calculate a
temperature based pressure.

A typical boiler systems pressure falls somewhere between
12 and 30 PSI. To approximate the pressure value, the tem-
perature reading is normalized by feature scaling it to a value
between 0 and 1. Then, we can multiply by the count of values
in the range of PSI readings we want to produce, in this case
19, the count of values between 12 and 30, inclusive. Finally,
by adding that value to the base value of 12 PSI our boiler
would sit at when cold, we get an extrapolated pressure reading
for the boiler. The formula, given that we know the minimum
and maximum temperatures produced by the model, for this
mathematic operation is:

(((Tboi — 308.35)/60.911) * 19) + 12 (1)

¢ The next step is to add conditional logic that looks at the
output of the equations and makes a decision. The logic for
our safety valve decoy is:

If PresBoi > 30 PSI, then BoiOverride = 1

If the extrapolated pressure is greater than 30 PSI then the
boiler is set to off in the simulation which predicts the resultant
system behavior and physics; which would be lowered temper-
ature of the water. Using our modified miniCPS CLI we can
add conditional logic to the decoy safety valve that compares
the calculated pressure to the pressure set point and make
a decision on whether or not to trigger the boiler’s override
switch. With the variables associated and the logic in place,
the deception can be executed.

Once we run the decoys we can observe them in this case
using a tool called Yet Another BACnet Explorer installed
on a host on the same network segment as the decoy valve
and the “real” boiler Modelica simulation. In “Fig. 57, the x-
axis represents the temperature in the boiler and the y-axis
represents time. The red line represents the temperature of the
boiler in the real system and the blue line is the decoy node
getting its reading from the learned model. At around 15:25
we changed the value of the pressure set point in the boiler
to 12 PSI, thus causing the logic to turn the boiler off. You
can see that the blue line trended downward as if the boiler
turned off, while the red line continued its pattern.

IX. CONCLUSION

In order to combat the cyber-physical attacks targeting OT
systems which are often slow to patch and upgrade, new
and innovative security solutions must be utilized. Deception
defense is a perfectly aligned solution that minimally impacts
the physical system while providing enhanced detection and
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attack disruption. Additional fidelity is a necessary component
for deception to work in cyber-physical environments, due to
the physical process monitoring and control associated with
these types of networks. By adding a model of the physical
system it is possible to increase the realism of decoy devices.
A distributed platform as described in this paper is capable of
deploying decoys in multiple network segments and managing
their perspective of the physical world. The prototype imple-
mentation of this solution and the use case for a boiler model
is only one example of how this novel methodology could
be applied. Future work could be performed to expand this
approach for more test cases and other systems. In addition,
there is more research to be done to study and enhance the
fidelity of decoys by creating vendor/product specific profiles
that include items like protocols supported, ports used, and
configuration of register points.
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